Spectra inhabiting the left half-plane that are universally realizable

Author:

Soto Ricardo L.1

Affiliation:

1. Departamento de Matemáticas , Universidad Católica del Norte , Antofagasta, Chile, Casilla 1280 , Antofagasta , Chile

Abstract

Abstract Let Λ = {λ1, λ2, . . ., λ n } be a list of complex numbers. Λ is said to be realizable if it is the spectrum of an entrywise nonnegative matrix. Λ is universally realizable if it is realizable for each possible Jordan canonical form allowed by Λ. Minc ([21],1981) showed that if Λ is diagonalizably positively realizable, then Λ is universally realizable. The positivity condition is essential for the proof of Minc, and the question whether the result holds for nonnegative realizations has been open for almost forty years. Recently, two extensions of the Minc’s result have been proved in ([5], 2018) and ([12], 2020). In this work we characterize new left half-plane lists (λ1 > 0, Re λ i ≤ 0, i = 2, . . ., n) no positively realizable, which are universally realizable. We also show new criteria which allow to decide about the universal realizability of more general lists, extending in this way some previous results.

Publisher

Walter de Gruyter GmbH

Subject

Geometry and Topology,Algebra and Number Theory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3