On the spectrum of linear combinations of finitely many diagonalizable matrices that mutually commute

Author:

Kişi Emre1,Sarduvan Murat1,Özdemir Halim1,Kalaycı Nurgül1

Affiliation:

1. Department of Mathematics , Sakarya University , Sakarya TR54187 Turkey

Abstract

Abstract We propose an algorithm, which is based on the method given by Kişi and Özdemir in [Math Commun, 23 (2018) 61], to handle the problem of when a linear combination matrix X = i = 1 m c i X i X = \sum\nolimits_{i = 1}^m {{c_i}{X_i}} is a matrix such that its spectrum is a subset of a particular set, where ci , i = 1, 2, ..., m, are nonzero scalars and Xi , i = 1, 2, ..., m, are mutually commuting diagonalizable matrices. Besides, Mathematica implementation codes of the algorithm are also provided. The problems of characterizing all situations in which a linear combination of some special matrices, e.g. the matrices that coincide with some of their powers, is also a special matrix can easily be solved via the algorithm by choosing of the spectra of the matrices X and Xi , i = 1, 2, ..., m, as subsets of some particular sets. Nine of the open problems in the literature are solved by utilizing the algorithm. The results of the four of them, i.e. cubicity of linear combinations of two commuting cubic matrices, quadripotency of linear combinations of two commuting quadripotent matrices, tripotency of linear combinations of three mutually commuting tripotent matrices, and tripotency of linear combinations of four mutually commuting involutive matrices, are presented explicitly in this work. Due to the length of their presentations, the results of the five of them, i.e. quadraticity of linear combinations of three or four mutually commuting quadratic matrices, cubicity of linear combinations of three mutually commuting cubic matrices, quadripotency of linear combinations of three mutually commuting quadripotent matrices, and tripotency of linear combinations of four mutually commuting tripotent matrices, are given as program outputs only. The results obtained are extensions and/or generalizations of some of the results in the literature.

Publisher

Walter de Gruyter GmbH

Subject

Geometry and Topology,Algebra and Number Theory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3