Affiliation:
1. Universitat Politècnica de Catalunya , Departament de Matemàtiques , Barcelona , Spain
Abstract
Abstract
Explicit expressions for the coefficients of the group inverse of a circulant matrix depending on four complex parameters are analytically derived. The computation of the entries of the group inverse are now reduced to the evaluation of a polynomial. Moreover, our methodology applies to both the invertible and the singular case, the latter being computationally less expensive. The techniques we use are related to the solution of boundary value problems associated with second order linear difference equations.
Subject
Geometry and Topology,Algebra and Number Theory
Reference12 articles.
1. [1] Bendito, E., Encinas, A. M., Carmona, Á., Eigenvalues, eigenfunctions and Green’s functions on a path via Chebyshev polynomials, Appl. Anal. Discrete Math.3 (2) (2009) 282–302.
2. [2] Carmona, Á., Encinas, A.M., Gago, S., Jiménez, M.J., Mitjana, M., The inverses of some circulant matrices, Appl. Math. Comput.270 (2015), 785-793.
3. [3] Carmona, Á., Encinas, A.M., Jiménez, M.J., Mitjana, M., The group inverse of some circulant matrices, Linear Algebra Appl., 614 (2021) 415–436.
4. [4] Chan, R. H., Chan, T. F., Circulant preconditioners for elliptic problems, J. Numer. Linear Algebra Appl.1 (1) (1992) 77–101.
5. [5] Chen, M., On the solution of circulant linear systems, SIAM J. Numer. Anal.24 (1987) 668–683.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献