Asymptotic analysis of positive solutions of first-order cyclic functional differential systems

Author:

Jaroš Jaroslav1,Takaŝi Kusano2

Affiliation:

1. 1Department of Mathematical Analysis and Numerical Mathematics, Faculty of Mathematics, Physics and Informatics, Comenius University, 842 48 Bratislava, Slovakia

2. 2Department of Mathematics, Faculty of Science, Hiroshima University, Higashi-Hiroshima, 739-8526, Japan

Abstract

AbstractThe structure and the asymptotic behavior of positive increasing solutions of functional differential systems of the form$x^{\prime}(t)=p(t)\varphi_{\alpha}\bigl{(}y(k(t))\bigr{)},\quad y^{\prime}(t)=% q(t)\varphi_{\beta}\bigl{(}x(l(t))\bigr{)}$are investigated in detail, where α and β are positive constants,${p(t)}$and${q(t)}$are positive continuous functions on${[0,\infty)}$,${k(t)}$and${l(t)}$are positive continuous functions on${[0,\infty)}$tending to${\infty}$witht, and${\varphi_{\gamma}(u)=\lvert u\rvert^{\gamma}\operatorname{sgn}u}$,${\gamma>0}$,${u\in\mathbb{R}}$. An extreme class of positive increasing solutions, calledrapidly increasing solutions, of the system above is analyzed by means of regularly varying functions. The results obtained find applications to systems of the form$x^{\prime}(g(t))=p(t)\varphi_{\alpha}\bigl{(}y(k(t))\bigr{)},\quad y^{\prime}(% h(t))=q(t)\varphi_{\beta}\bigl{(}x(l(t))\bigr{)},$and to scalar equations of the type$\Bigl{(}p(t)\varphi_{\alpha}\bigl{(}x^{\prime}(g(t))\bigr{)}\Bigr{)}^{\prime}=% p(t)\varphi_{\beta}\bigl{(}x(l(t))\bigr{)}.$

Funder

Vedecká Grantová Agentúra MŠVVaŠ SR a SAV

Publisher

Walter de Gruyter GmbH

Subject

General Mathematics

Reference22 articles.

1. Slowly varying solutions of a class of first order systems of nonlinear differential equations;Acta Math. Univ. Comenian. (N.S.),2013

2. Existence and precise asymptotic behavior of strongly monotone solutions of systems of nonlinear differential equations;Differ. Equ. Appl.,2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3