The spaces of bilinear multipliers of weighted Lorentz type modulation spaces

Author:

Gürkanlı Ahmet Turan1,Kulak Öznur2,Sandıkçı Ayşe2

Affiliation:

1. 1Department of Mathematics and Computer Science, Faculty of Sciences and Letters, İstanbul Arel University, Tepekent, Büyükçekmece, İstanbul, Turkey

2. 2Department of Mathematics, Faculty of Arts and Sciences, Ondokuz Mayis University, 55139 Kurupelit, Samsun, Turkey

Abstract

AbstractFix a nonzero window ${g\in\mathcal{S}(\mathbb{R}^{n})}$, a weight function w on ${\mathbb{R}^{2n}}$ and ${1\leq p,q\leq\infty}$. The weighted Lorentz type modulation space ${M(p,q,w)(\mathbb{R}^{n})}$ consists of all tempered distributions ${f\in\mathcal{S}^{\prime}(\mathbb{R}^{n})}$ such that the short time Fourier transform ${V_{g}f}$ is in the weighted Lorentz space ${L(p,q,w\,d\mu)(\mathbb{R}^{2n})}$. The norm on ${M(p,q,w)(\mathbb{R}^{n})}$ is ${\|f\/\|_{M(p,q,w)}=\|V_{g}f\/\|_{pq,w}}$. This space was firstly defined and some of its properties were investigated for the unweighted case by Gürkanlı in [9] and generalized to the weighted case by Sandıkçı and Gürkanlı in [16]. Let ${1<p_{1},p_{2}<\infty}$, ${1\leq q_{1},q_{2}<\infty}$, ${1\leq p_{3},q_{3}\leq\infty}$, ${\omega_{1},\omega_{2}}$ be polynomial weights and ${\omega_{3}}$ be a weight function on ${\mathbb{R}^{2n}}$. In the present paper, we define the bilinear multiplier operator from ${M(p_{1},q_{1},\omega_{1})(\mathbb{R}^{n})\times M(p_{2},q_{2},\omega_{2})(% \mathbb{R}^{n})}$ to ${M(p_{3},q_{3},\omega_{3})(\mathbb{R}^{n})}$ in the following way. Assume that ${m(\xi,\eta)}$ is a bounded function on ${\mathbb{R}^{2n}}$, and define$B_{m}(f,g)(x)=\int_{\mathbb{R}^{n}}\int_{\mathbb{R}^{n}}\hat{f}(\xi)\hat{g}(% \eta)m(\xi,\eta)e^{2\pi i\langle\xi+\eta,x\rangle}\,d\xi\,d\eta\quad\text{for % all ${f,g\in\mathcal{S}(\mathbb{R}^{n})}$. }$The function m is said to be a bilinear multiplier on ${\mathbb{R}^{n}}$ of type ${(p_{1},q_{1},\omega_{1};p_{2},q_{2},\omega_{2};p_{3},q_{3},\omega_{3})}$ if ${B_{m}}$ is the bounded bilinear operator from ${M(p_{1},q_{1},\omega_{1})(\mathbb{R}^{n})\times M(p_{2},q_{2},\omega_{2})(% \mathbb{R}^{n})}$ to ${M(p_{3},q_{3},\omega_{3})(\mathbb{R}^{n})}$. We denote by ${\mathrm{BM}(p_{1},q_{1},\omega_{1};p_{2},q_{2},\omega_{2})(\mathbb{R}^{n})}$ the space of all bilinear multipliers of type ${(p_{1},q_{1},\omega_{1};p_{2},q_{2},\omega_{2};p_{3},q_{3},\omega_{3})}$, and define ${\|m\|_{(p_{1},q_{1},\omega_{1};p_{2},q_{2},\omega_{2};p_{3},q_{3},\omega_{3})% }=\|B_{m}\|}$. We discuss the necessary and sufficient conditions for ${B_{m}}$ to be bounded. We investigate the properties of this space and we give some examples.

Publisher

Walter de Gruyter GmbH

Subject

General Mathematics

Reference32 articles.

1. Bilinear multipliers of weighted Lebesgue spaces and variable exponent Lebesgue spaces;J. Inequal. Appl.,2013

2. Continuity of Wigner-type operators on Lorentz spaces and Lorentz mixed normed modulation spaces;Turkish J. Math.,2014

3. Bilinear operators with non-smooth symbol. I;J. Fourier Anal. Appl.,2001

4. Gabor analysis of the spaces M⁢(p,q,w)⁢(ℝd)${M(p,q,w)(\mathbb{R}^{d})}$ and S⁢(p,q,r,w,ω)⁢(ℝd)${S(p,q,r,w,\omega)(\mathbb{R}^{d})}$;Acta Math. Sci. Ser. B Engl. Ed.,2011

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Dual of Modulation Spaces with Variable Smoothness and Integrability;Journal of Function Spaces;2022-05-29

2. Bilinear multipliers of small Lebesgue spaces;TURKISH JOURNAL OF MATHEMATICS;2021-09-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3