Performance analysis of nonlinear crosstalk of WDM systems using modulation schemes criteria

Author:

Mohammed Nidhal Abd1,Mansoor Riyadh2,Abd Haider J.3,Fadhil Hilal A.4

Affiliation:

1. Department of Electricity Techniques, Technical Institute, Al-Furat Al-Awsat Technical University , Samawa , Iraq

2. Department of Electronics and Communication Engineering, Al Muthanna University , Samawa , Iraq

3. Biomedical Engineering Department, College of Engineering and Technologies, Al-Mustaqbal University , Hillah , 51001, Babil , Iraq

4. Department of Electrical and Computer Engineering, Sohar University , Sohar , Oman

Abstract

Abstract Nonlinearities in optical fibers are regarded as the most significant barriers that endanger the effectiveness of the optical transmission system and pose a threat to communication quality. Four-wave mixing (FWM) is one of the most important nonlinear effects that greatly reduces the wavelength-division multiplexing (WDM) system performance at high data rates over extended transmission distances. This research examines, and assesses, numerically, the behavior of a 4-channel, 40 Gbps WDM system under the effect of the FWM under various tuning parameters, including dispersion, input power, and wavelength spacing. The system model was built using OptiSystem software, and then three different modulation formats, namely, Non-return-to-zero-frequency shift keying, Return-to-zero frequency shift keying, and differential phase shift keying (DPSK) are used to assess the FWM power penalty. The results demonstrate that the FWM power penalty obtained with 1 nm wavelength separation in the DPSK method is dramatically reduced to −35 dBm. This study also demonstrates that when power variation is taken into consideration, the DPSK modulation scheme delivers a lower bit error rate in comparison to other modulation schemes.

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3