Data-based prediction of microbial contamination in herbs and identification of optimal harvest parameters

Author:

Anlauf Stefan12,Haghofer Andreas123,Dirnberger Karl4,Winkler Stephan123

Affiliation:

1. FFoQSI GmbH , Technopark 1C , 3430 Tulln , Austria

2. University of Applied Sciences Upper Austria, Bioinformatics , Softwarepark 11 , 4232 Hagenberg , Austria

3. Johannes Kepler University, Computer Science , Altenberger Straße 69 , 4040 Linz , Austria

4. Österreichische Bergkräutergenossenschaft , Thierberg 1 , 4192 Hirschbach , Austria

Abstract

Abstract The quality of freshly harvested herbs is affected by several crucial factors, such as weather, tillage, fertilization, drying, and the harvesting process, e.g. Our main goal is to learn models that are able to predict spore contaminations in different types of herbs on the basis of information about the harvesting process, transport conditions, drying, and storage conditions. This shall enable us to identify optimal processing parameters, which will allow more effective and cost efficient contamination prevention. Using machine learning, we have generated ensembles of models that predict the risk for spore contamination on the basis of harvest processing parameters. The training information about contamination in herbs is given as results of laboratory analysis data. We applied different modeling algorithms (random forests, gradient boosting trees, genetic programming, and neural networks). In this paper we report on modeling results for yeast and mold contaminations in peppermint and nettle; e.g., for yeast contamination in peppermint we obtained models with 78.13% accuracy. Additionally, we use descriptive statistics to identify those parameters that have a statistically significant influence on the contamination; for example, our analysis shows that there seems to be a relationship between mold in peppermint and information about harrowing and the growth height (p = 0.001).

Publisher

Walter de Gruyter GmbH

Subject

Engineering (miscellaneous),Food Science,Biotechnology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3