Combined effects of low pressure superheated steam drying and vacuum drying on sugar reduction and quality attribute in mango (Mangifera indica L.) slices

Author:

Liu Jianbo1,Xu Xin1ORCID,Zhang Tianjian1,Wang Jingcheng2,Wang Ruifang2,Xu Qing2ORCID

Affiliation:

1. College of Engineering and Technology , 91633 Tianjin Agricultural University , 22 Jinjing Road, Xiqing District , Tianjin 300392 , P.R. China

2. College of Mechanical Engineering, Tianjin Key Laboratory of Integrated Design and On-line Monitoring for Light Industry & Food Machinery and Equipment , 66345 Tianjin University of Science and Technology , 1038 South Dagu Road, Hexi District , Tianjin 300222 , P.R. China

Abstract

Abstract Consumers paying more attention to physical health has led to an increasing market demand for low-sugar dried fruit products. The quality of products dried via low pressure superheated steam drying (LPSSD) is not only superior to those dried via conventional hot air or vacuum drying (VD), but also has the potential to reduce sugar content. In order to elucidate the mechanism of reducing the sugar of mango slices by LPSSD and obtain low-sugar dried mango slices, the combined effect of LPSSD–VD on mango slices was studied and an evaporation experiment of a sugar solution in a low pressure superheated steam environment was performed. This study revealed that the sugar reduction of mango slices was mainly due to the superheated steam carryover phenomenon in the second half of the constant-temperature stage and the occurrence of Maillard reaction during LPSSD. The quality attributes of mango slices dried using LPSSD–VD was improved compared with LPSSD and VD. As a result, LPSSD–VD could be used to regulate the sugar content in dried fruit and provide a theoretical basis for the production of low-sugar preserved fruits.

Funder

Tianjin Science and Technology Project

Tianjin Municipal Education Commission

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3