Optimization of the temperature profile of cake batter in an ohmic heating – assisted printing nozzle for 3D food printing applications

Author:

Niane Mamadou L.1,Rouaud Olivier1ORCID,Ogé Anthony1,Quéveau Delphine1,Le-Bail Alain1,Le-Bail Patricia2

Affiliation:

1. Oniris, Nantes Université, CNRS, GEPEA , UMR 6144, F-44000 , Nantes , France

2. INRAE, BIA , UR1268, F-44316 Nantes , France

Abstract

Abstract 3D printing of food has great potential for applications such as the design of customised food or the creation of innovative textures. However, printed products often do not retain their structure due to the composition of the material, especially in the case of cereal products. Cooking such products with a nozzle could be an alternative to meet this challenge. The objective of this work was to develop, with the help of a numerical model, a 3D cake batter printing nozzle in which ohmic heating is used for baking. The use of a temperature and shear rate dependent viscosity allowed the solidification of the batter during baking due to starch gelatinization. The numerical model made it possible to predict heterogeneity in temperature distribution. Optimization procedures were used to reach desired temperature profiles at the outlet of the nozzle, reducing by 17 % the electrical power used for heating and by 78 % the energy evacuated during cooling.

Funder

ONIRIS-GEPEA and FEDER

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3