Global existence and blow-up of solutions for coupled bi-harmonic nonlinear wave equations

Author:

Ghanmi Radhia1,Saanouni Tarek2ORCID

Affiliation:

1. Faculty of Sciences of Tunis, LR03ES04 Partial Differential Equations and Applications , University Tunis El Manar , 2092 Tunis , Tunisia

2. Department of Mathematics , College of Science and Arts in Uglat Asugour , Qassim University , Buraydah , Kingdom of Saudi Arabia

Abstract

Abstract This work studies the coupled nonlinear fourth-order wave system u ¨ i + Δ 2 u i + u i = ± ( 1 j m a i j | u j | p ) | u i | p - 2 u i . \ddot{u}_{i}+\Delta^{2}u_{i}+u_{i}=\pm\bigg{(}\sum_{1\leq j\leq m}a_{ij}\lvert u% _{j}\rvert^{p}\biggr{)}\lvert u_{i}\rvert^{p-2}u_{i}. The main goal is to develop a local theory in the energy space and to investigate some issues of the global theory. Indeed, using a standard contraction argument coupled with Strichartz estimates, one obtains a local solution in the inhomogeneous Sobolev space ( H 1 ) m {(H^{1})^{m}} for the energy sub-critical regime. Then the local solution extends to a global one in the attractive regime; also in the energy critical case there is a global solution with small data. For a repulsive source term, by using the potential well theory with a concavity argument, the local solution may concentrate in finite time or extend to a global one. Finally, in the inter-critical regime, one proves the existence of infinitely many non-global solutions with data near to the stationary solution. Here, one needs to deal with the coupled source term which gives some technical restrictions such as p 2 {p\geq 2} in order to avoid a singularity. This assumption in the inter-critical regime gives a restriction on the space dimension.

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,Numerical Analysis,Analysis

Reference22 articles.

1. H. Berestycki and T. Cazenave, Instabilité des états stationnaires dans les équations de Schrödinger et de Klein–Gordon non linéaires, C. R. Acad. Sci. Paris 293 (1981), no. 9, 489–492.

2. F. P. Bretherton, Resonant interactions between waves. The case of discrete oscillations, J. Fluid Mech. 20 (1964), 457–479.

3. J. Ferreira and G. P. Menzala, Decay of solutions of a system of nonlinear Klein–Gordon equations, Int. J. Math. Math. Sci. 9 (1986), no. 3, 471–483.

4. R. Ghanmi, Asymptotics for a class of coupled fourth-order Schrödinger equations, Mediterr. J. Math. 15 (2018), no. 3, Paper No. 109.

5. E. Hebey and B. Pausader, An introduction to fourth-order nonlinear wave equations, 2008.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3