Affiliation:
1. Department of Mathematics , Sardar Vallabhbhai National Institute of Technology , Surat , India
Abstract
Abstract
Establishing a new integral inequality for the Riemann–Liouville fractional integral operator is the main objective of this paper. For twice differentiable s-
(
κ
,
H
)
{(\kappa,H)}
-convex functions, we present a number of new inequalities that are connected to the Hermite–Hadamard integral inequality.
Reference14 articles.
1. M. W. Alomari, M. Darus and U. S. Kirmaci,
Some inequalities of Hermite–Hadamard type for s-convex functions,
Acta Math. Sci. Ser. B (Engl. Ed.) 31 (2011), no. 4, 1643–1652.
2. S. S. Dragomir,
On Hadamard’s inequalities for convex functions,
Math. Balkanica (N. S.) 6 (1992), no. 3, 215–222.
3. S. S. Dragomir and A. McAndrew,
Refinements of the Hermite-Hadamard inequality for convex functions,
JIPAM. J. Inequal. Pure Appl. Math. 6 (2005), no. 5, Article 140.
4. I. İşcan,
New refinements for integral and sum forms of Hölder inequality,
J. Inequal. Appl. (2019), Paper No. 304.
5. M. Kadakal, I. İşcan, H. Kadakal and K. Bekar,
On improvements of some integral inequalities,
Honam Math. J. 43 (2021), no. 3, 441–452.