Analysis, Adaptive Control and Synchronization of a Novel 4-D Hyperchaotic Hyperjerk System via Backstepping Control Method

Author:

Vaidyanathan Sundarapandian

Abstract

AbstractA hyperjerk system is a dynamical system, which is modelled by annth order ordinary differential equation withn≥ 4 describing the time evolution of a single scalar variable. Equivalently, using a chain of integrators, a hyperjerk system can be modelled as a system ofnfirst order ordinary differential equations withn≥ 4. In this research work, a 4-D novel hyperchaotic hyperjerk system with two nonlinearities has been proposed, and its qualitative properties have been detailed. The novel hyperjerk system has a unique equilibrium at the origin, which is a saddle-focus and unstable. The Lyapunov exponents of the novel hyperjerk system are obtained asL1= 0.14219,L2= 0.04605,L3= 0 andL4= −1.39267. The Kaplan-Yorke dimension of the novel hyperjerk system is obtained asDKY= 3.1348. Next, an adaptive controller is designed via backstepping control method to stabilize the novel hyperjerk chaotic system with three unknown parameters. Moreover, an adaptive controller is designed via backstepping control method to achieve global synchronization of the identical novel hyperjerk systems with three unknown parameters. MATLAB simulations are shown to illustrate all the main results derived in this research work on a novel hyperjerk system.

Publisher

Walter de Gruyter GmbH

Subject

Control and Optimization,Modelling and Simulation,Control and Systems Engineering

Reference89 articles.

1. An equation for hyperchaos;RÖSSLER;Physics Letters A,1979

2. Lag synchronization of hyperchaos with application to secure communications Solitons and;LI;Chaos Fractals,2005

3. Hyperchaos adaptive control and synchronization of a novel hyperchaotic system with three positive Lyapunov exponents and its SPICE implementation of Control;VAIDYANATHAN;Archives Sciences,2014

4. A novel jerk chaotic system with three quadratic nonlinearities and its adaptive control of Control;VAIDYANATHAN;Archives Sciences,2016

5. Anti - synchronization of Lü and Pan chaotic systems by adaptive nonlinear control of Scientific Research;SUNDARAPANDIAN;European Journal,2011

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3