Abstract
Abstract
We propose a generalization of the Butkovskiy's method of control with compact support [1] allowing to derive exact controllability conditions and construct explicit solutions in control problems for systems with distributed parameters. The idea is the introduction of a new state function which is supported in considered bounded time interval and coincides with the original one therein. By means of techniques of the distributions theory the problem is reduced to an interpolation problem for Fourier image of unknown function or to corresponding system of integral equalities. Treating it as infinite dimensional problem of moments, its L1, L2 and L∞-optimal solutions are constructed explicitly. The technique is explained for semilinear wave equation with distributed and boundary controls. Particular cases are discussed.
Subject
Control and Optimization,Modeling and Simulation,Control and Systems Engineering
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献