Affiliation:
1. Department of Mathematics , Kyungpook National University , 41566 Daegu , Republic of Korea
2. Department of Mathematics Education and RINS , Gyeongsang National University , 52828 Jinju , Republic of Korea
Abstract
Abstract
In this paper, we study a conformally flat 3-space
𝔽
3
{\mathbb{F}_{3}}
which is an Euclidean 3-space with a conformally flat metric
with the conformal factor
1
F
2
{\frac{1}{F^{2}}}
, where
F
(
x
)
=
e
-
x
1
2
-
x
2
2
{F(x)=e^{-x_{1}^{2}-x_{2}^{2}}}
for
x
=
(
x
1
,
x
2
,
x
3
)
∈
ℝ
3
{x=(x_{1},x_{2},x_{3})\in\mathbb{R}^{3}}
.
In particular, we construct all helicoidal surfaces in
𝔽
3
{\mathbb{F}_{3}}
by solving the second-order non-linear ODE with extrinsic curvature and
mean curvature functions. As a result, we give classification of minimal helicoidal surfaces as well as
examples for helicoidal surfaces with some extrinsic curvature and mean curvature functions in
𝔽
3
{\mathbb{F}_{3}}
.
Funder
National Research Foundation of Korea
Reference9 articles.
1. K. O. Araújo, N. Cui and R. S. Pina,
Helicoidal minimal surfaces in a conformally flat 3-space,
Bull. Korean Math. Soc. 53 (2016), no. 2, 531–540.
2. C. Baikoussis and T. Koufogiorgos,
Helicoidal surfaces with prescribed mean or Gaussian curvature,
J. Geom. 63 (1998), no. 1–2, 25–29.
3. C. C. Beneki, G. Kaimakamis and B. J. Papantonios,
Helicoidal surfaces in three-dimensional Minkowski space,
J. Math. Anal. Appl. 275 (2002), no. 2, 586–614.
4. A. V. Corro, R. Pina and M. Souza,
Surfaces of rotation with constant extrinsic curvature in a conformally flat 3-space,
Results Math. 60 (2011), no. 1–4, 225–234.
5. C. H. Delaunay,
Sur la surface de révolution dont la courbure moyenne est constante,
J. Math. Pures Appl. Series 1 6 (1841), 309–320.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献