Admissible Galois Structures on the categories dual to some varieties of universal algebras

Author:

Zangurashvili Dali1

Affiliation:

1. A. Razmadze Mathematical Institute of I. Javakhishvili Tbilisi State University , 6 Tamarashvili Str. , Tbilisi 0177 , Georgia

Abstract

Abstract The subject of the paper is suggested by G. Janelidze and motivated by his earlier result giving a positive answer to the question posed by S. MacLane whether the Galois theory of homogeneous linear ordinary differential equations over a differential field (which is Kolchin–Ritt theory and an algebraic version of Picard–Vessiot theory) can be obtained as a particular case of G. Janelidze’s Galois theory in categories. One ground category in the Galois structure involved in this theory is dual to the category of commutative rings with unit, and another one is dual to the category of commutative differential rings with unit. In the present paper, we apply the general categorical construction, the particular case of which gives this Galois structure, by replacing “commutative rings with unit” by algebras from any variety V \mathscr{V} of universal algebras satisfying the amalgamation property and a certain condition (of the syntactical nature) for elements of amalgamated free products which was introduced earlier, and replacing “commutative differential rings with unit” by V \mathscr{V} -algebras equipped with additional unary operations which satisfy some special identities to construct a new Galois structure. It is proved that this Galois structure is admissible. Moreover, normal extensions with respect to it are characterized in the case where V \mathscr{V} is any of the following varieties: abelian groups, loops and quasigroups.

Funder

Shota Rustaveli National Science Foundation

Publisher

Walter de Gruyter GmbH

Subject

General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3