Mixed type boundary value problems for Laplace–Beltrami equation on a surface with the Lipschitz boundary

Author:

Duduchava Roland1

Affiliation:

1. Institute of Mathematics , The University of Georgia , 79A M. Kostava str.; and A. Razmadze Mathematical Institute, I. Javakhishvili Tbilisi State University, 6 Tamarashvili str. , Tbilisi 0177 , Georgia

Abstract

Abstract The purpose of the present research is to investigate a general mixed type boundary value problem for the Laplace–Beltrami equation on a surface with the Lipschitz boundary 𝒞 {\mathcal{C}} in the non-classical setting when solutions are sought in the Bessel potential spaces p s ( 𝒞 ) {\mathbb{H}^{s}_{p}(\mathcal{C})} , 1 p < s < 1 + 1 p {\frac{1}{p}<s<1+\frac{1}{p}} , 1 < p < {1<p<\infty} . Fredholm criteria and unique solvability criteria are found. By the localization, the problem is reduced to the investigation of model Dirichlet, Neumann and mixed boundary value problems for the Laplace equation in a planar angular domain Ω α 2 {\Omega_{\alpha}\subset\mathbb{R}^{2}} of magnitude α. The model mixed BVP is investigated in the earlier paper [R. Duduchava and M. Tsaava, Mixed boundary value problems for the Helmholtz equation in a model 2D angular domain, Georgian Math. J. 27 2020, 2, 211–231], and the model Dirichlet and Neumann boundary value problems are studied in the non-classical setting. The problems are investigated by the potential method and reduction to locally equivalent 2 × 2 {2\times 2} systems of Mellin convolution equations with meromorphic kernels on the semi-infinite axes + {\mathbb{R}^{+}} in the Bessel potential spaces. Such equations were recently studied by R. Duduchava [Mellin convolution operators in Bessel potential spaces with admissible meromorphic kernels, Mem. Differ. Equ. Math. Phys. 60 2013, 135–177] and V. Didenko and R. Duduchava [Mellin convolution operators in Bessel potential spaces, J. Math. Anal. Appl. 443 2016, 2, 707–731].

Funder

Shota Rustaveli National Science Foundation

Publisher

Walter de Gruyter GmbH

Subject

General Mathematics

Reference29 articles.

1. T. Buchukuri, R. Duduchava, D. Kapanadze and M. Tsaava, Localization of a Helmholtz boundary value problem in a domain with piecewise-smooth boundary, Proc. A. Razmadze Math. Inst. 162 (2013), 37–44.

2. L. P. Castro, R. Duduchava and F.-O. Speck, Localization and minimal normalization of some basic mixed boundary value problems, Factorization, Singular Operators and Related Problems (Funchal 2002), Kluwer Academic, Dordrecht (2003), 73–100.

3. L. P. Castro, R. Duduchava and F.-O. Speck, Mixed impedance boundary value problems for the Laplace–Beltrami equation, to appear in J. Integral Equations Appl., https://projecteuclid.org/euclid.jiea/1580958082.

4. L. P. Castro and D. Kapanadze, Wave diffraction by wedges having arbitrary aperture angle, J. Math. Anal. Appl. 421 (2015), no. 2, 1295–1314.

5. M. Costabel and E. Stephan, Boundary integral equations for mixed boundary value problems in polygonal domains and Galerkin approximation, Mathematical Models and Methods in Mechanics, Banach Center Publ. 15, PWN, Warsaw (1985), 175–251.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3