Genetic variation of microfibril angle and its relationship with solid wood and pulpwood traits in two progeny trials of Eucalyptus nitens in Tasmania

Author:

Rocha-Sepúlveda Manuel F.1ORCID,Williams Dean2ORCID,Vega Mario1ORCID,Harrison Peter A.1ORCID,Vaillancourt René E.1ORCID,Potts Brad M.1ORCID

Affiliation:

1. School of Natural Sciences and ARC Training Centre for Forest Value, University of Tasmania , Hobart , Tas 7001 , Australia

2. Sustainable Timber Tasmania , Hobart , Tas , Australia

Abstract

Abstract Microfibril angle (MFA) is a key biological trait contributing to wood stiffness, which is a common breeding objective for solid wood products in many tree species. To explore its genetic architecture, area-weighted MFA was measured in two Eucalyptus nitens progeny trials in Tasmania, Australia, with common open-pollinated families. Radial strips were extracted from 823 trees in 131 families and MFA assessed using SilviScan-2®. Heritability, genotype-by-environment interaction and inter-trait genetic correlations were evaluated to examine the genetic variability and stability of MFA and its relationships with other solid wood and pulpwood selection traits. Significant family variation was found for MFA in both trials. There was no significant genotype-by-environment interaction and the across-site narrow-sense heritability was 0.27. MFA was genetically independent of basic density, growth, and tree form. However, MFA was strongly and favourable genetically correlated to acoustic wave velocity in standing trees, modulus of elasticity and kraft pulp yield (KPY). The present study has shown that genetic improvement of E. nitens for pulpwood selection traits is unlikely to have adversely affected MFA, and thus timber stiffness. Rather these results suggest the possibility that selection for increased KPY may have indirectly improved MFA favourably for solid wood products.

Funder

Australian Research Council Industrial Transformation Training Centre

Publisher

Walter de Gruyter GmbH

Subject

Biomaterials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Effects of thinning on the longitudinal and radial variation in wood properties of Eucalyptus nitens;Forestry: An International Journal of Forest Research;2022-04-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3