Discontinuous Galerkin time discretization methods for parabolic problems with linear constraints

Author:

Voulis Igor,Reusken Arnold

Abstract

Abstract We consider time discretization methods for abstract parabolic problems with inhomogeneous linear constraints. Prototype examples that fit into the general framework are the heat equation with inhomogeneous (time-dependent) Dirichlet boundary conditions and the time-dependent Stokes equation with an inhomogeneous divergence constraint. Two common ways of treating such linear constraints, namely explicit or implicit (via Lagrange multipliers) are studied. These different treatments lead to different variational formulations of the parabolic problem. For these formulations we introduce a modification of the standard discontinuous Galerkin (DG) time discretization method in which an appropriate projection is used in the discretization of the constraint. For these discretizations (optimal) error bounds, including superconvergence results, are derived. Discretization error bounds for the Lagrange multiplier are presented. Results of experiments confirm the theoretically predicted optimal convergence rates and show that without the modification the (standard) DG method has sub-optimal convergence behavior.

Publisher

Walter de Gruyter GmbH

Subject

Computational Mathematics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Time‐continuous and time‐discontinuous space‐time finite elements for advection‐diffusion problems;International Journal for Numerical Methods in Engineering;2023-03-30

2. Singular perturbation results for linear partial differential–algebraic equations of hyperbolic type;Journal of Mathematical Analysis and Applications;2022-07

3. Continuous Galerkin schemes for semiexplicit differential-algebraic equations;IMA Journal of Numerical Analysis;2021-05-17

4. Exponential Integrators for Semi-linear Parabolic Problems with Linear Constraints;Progress in Differential-Algebraic Equations II;2020

5. An Optimal Order CG-DG Space-Time Discretization Method for Parabolic Problems;Lecture Notes in Computational Science and Engineering;2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3