On convergent schemes for a two-phase Oldroyd-B type model with variable polymer density

Author:

Sieber Oliver1

Affiliation:

1. Department Mathematik, Friedrich-Alexander-Universtät Erlangen-Nürnberg, Cauerstr. 11, 91058, Erlangen, Germany

Abstract

AbstractThe paper is concerned with a diffuse-interface model that describes two-phase flow of dilute polymeric solutions with a variable particle density. The additional stresses, which arise by elongations of the polymers caused by deformations of the fluid, are described by Kramers stress tensor. The evolution of Kramers stress tensor is modeled by an Oldroyd-B type equation that is coupled to a Navier–Stokes type equation, a Cahn–Hilliard type equation, and a parabolic equation for the particle density. We present a regularized finite element approximation of this model, prove that our scheme is energy stable and that there exist discrete solutions to it. Furthermore, in the case of equal mass densities and two space dimensions, we are able to pass to the limit rigorously as the regularization parameters and the spatial and temporal discretization parameters tend towards zero and prove that a subsequence of discrete solutions converges to a global-in-time weak solution to the unregularized coupled system. To the best of our knowledge, this is the first existence result for a two-phase flow model of viscoelastic fluids with an Oldroyd-B type equation. Additionally, we show that our finite element scheme is fully practical and we present numerical simulations.

Publisher

Walter de Gruyter GmbH

Subject

Computational Mathematics

Reference62 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3