Applying Discriminant and Cluster Analyses to Separate Allergenic from Non-allergenic Proteins

Author:

Naneva L.1,Nedyalkova M.1,Madurga S.2,Mas F.2,Simeonov V.1

Affiliation:

1. Faculty of Chemistry and Pharmacy, University of Sofia ”St. Kl.Okhridski”, J. Bourchier Blvd. 1, 1164Sofia, Bulgaria

2. Physical Chemistry Unit, Materials Science and Physical Chemistry Department & Research Institute of Theoretical and Computational Chemistry (IQTCUB) of Barcelona University (UB), Barcelona (Catalonia, Spain)

Abstract

AbstractAs a result of increased healthcare requirements and the introduction of genetically modified foods, the problem of allergies is becoming a growing health problem. The concept of allergies has prompted the use of new methods such as genomics and proteomics to uncover the nature of allergies. In the present study, a selection of 1400 food proteins was analysed by PLS-DA (Partial Least Square-based Discriminant Analysis) after suitable transformation of structural parameters into uniform vectors. Then, the resulting strings of different length were converted into vectors with equal length by Auto and Cross-Covariance (ACC) analysis. Hierarchical and non-hierarchical (K-means) Cluster Analysis (CA) was also performed in order to reach a certain level of separation within a small training set of plant proteins (16 allergenic and 16 non-allergenic) using a new three-dimensional descriptor based on surface protein properties in combination with amino acid hydrophobicity scales. The novelty of the approach in protein differentiation into allergenic and non-allergenic classes is described in the article.The general goal of the present study was to show the effectiveness of a traditional chemometric method for classification (PLS–DA) and the options of Cluster Analysis (CA) to separate by multivariate statistical methods allergenic from non-allergenic proteins.

Publisher

Walter de Gruyter GmbH

Subject

Materials Chemistry,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3