A numerical analysis of heat transfer in a cross-current heat exchanger with controlled and newly designed air flows

Author:

Żukowski Witold1,Migas Przemysław1,Gwadera Monika1,Larwa Barbara1,Kandafer Stanisław2

Affiliation:

1. Faculty of Chemical Engineering and Technology, Cracow University of Technology, Kraków, Poland

2. Faculty of Environmental Engineering, Cracow University of Technology, Kraków, Poland

Abstract

AbstractSimulations of heat transfer between air and flue gases in a plate heat exchanger are presented. The device was designed for the heating of the air supplying a fluidised furnace for the combustion of wet sludge and wood crumbs. The locations of inlets and outlets and the geometry of the heat exchanger are determined by the construction of the furnace. The aim of the simulations was to increase effectiveness of heat transfer through the use of flow redirections with additional baffles placed in the air chamber. The results of the simulations showed that a substantial part of the heat exchanger without baffles is not used effectively. On the basis of a velocity profile, a temperature distribution and a wall heat flux, the geometry of the inter-plate space within the air chamber was modified by adding baffles. The unmodified exchangers had 77% efficiency in comparison to counter-current exchangers with the same heat transfer area. After the application of baffles, the efficiency increased to 83-91% depending on the construction used (one, two or three baffles). The best model variant of the exchanger with baffles led to the increase in the temperature of air supplying the fluidised bed by approximately 76 K in relation to the system without baffles . Unexpectedly, the presented modifications of the geometry of the system had very low influence of the flow resistance in the air chamber. The value of Δp for the system without baffles is almost the same as for the best model variant.

Publisher

Walter de Gruyter GmbH

Subject

Materials Chemistry,General Chemistry

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3