Structural Properties and Nonlinear Optical Responses of Halogenated Compounds: A DFT Investigation on Molecular Modelling

Author:

Janjua Muhammad Ramzan Saeed Ashraf1

Affiliation:

1. Department of Chemistry, King Fahd University of Petroleum & Minerals (KFUPM)Dhahran31261, Kingdom of Saudi Arabia

Abstract

AbstractComputational chemistry is used to evaluate structures of different compounds by using principles of theoretical and quantum chemistry integrated into useful computer programs. It is used to determine energies, dipole moments and thermodynamic properties of different compounds. The present work reports the computational study of six donor-acceptor dyes. The computational method CAM-B3LYP with 6-31G(d,p) was used in this research to determine the effect of halogens on non-linear optical compounds. HOMO-LUMO energy gaps, dipole polarizabilities, first hyperpolarizabilities, and absorption spectra of six studied compounds (dye 1: 4-(2-(4-fluorophenyl)ethynyl)benzenamine; dye 2: 4-(2-(4-chlorophenyl)ethynyl)benzenamine; dye 3: 4-(2-(4-bromophenyl)ethynyl)benzenamine; dye 4: 5-(2-(4-fluorophenyl)ethynyl)benzene-1,2,3-triamine; dye 5: 5-(2-(4-chlorophenyl)ethynyl)benzene-1,2,3-triamine; dye 6: 5-(2-(4-bromophenyl)ethynyl)benzene-1,2,3-triamine) with aniline and halo phenyl segments were computed by using density functional theory (DFT) and time-dependent density functional theory (TDDFT). Results indicate that all dyes showed wavelengths of maximum absorbance in the visible region. Small HOMO-LUMO energy gaps were observed in all investigated dyes. The present calculations on these dyes (1-6) offer an understanding of the direction of charge transfer (CT) and how NLO behavior can be explained. The aniline-to-halo phenyl CT, caused by the combination of the donor amino group and the acceptor halo group, could be a reason for NLO behavior of these sorts of compounds. These compounds exhibit significant molecular second-order NLO responses, especially dyes (6) and (5), with second-order polarizability determined to be approximately 4600 a.u.

Publisher

Walter de Gruyter GmbH

Subject

Materials Chemistry,General Chemistry

Reference94 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3