The influence of the phosphorothioate diester bond on the DNA oxidation process

Author:

Karwowski Boleslaw T.

Abstract

AbstractThis study describes the influence of the phosphorothioate internucleotide bond on the deoxyribonucleic acid (DNA) oxidation process. The interaction of an ultraviolet radiation (UVA) with a targeted double-stranded (ds) oligonucleotide, in which one strand contains an antraquinone (AQ) moiety on the 5’-end, may lead to a hole migration process through the double helix. In the end, the migration of theformed radical cation terminates in a suitable place. Usually, this is a guanine-rich sequence. In another experiment, phosphorothioate internucleotide bonds were detected in the bacterial genome as a natural modification. In this study, a polyacrylamide gel electrophoresis (PAGE) autoradiogram analysis of irradiated ds-DNA showed that the oxidation reaction was not inhibited by an isolated guanine. Instead, irrespective of the absence or presence of a phosphorothioate bond, the termination of the ds-DNA oxidation process was predominantly observed on the thymine moieties. Based on the obtained results, it can be concluded that in the discussed case, a hole migration by a hopping mechanism is in competition with an oxidation reaction with a superoxide radical anion. Alternatively, the radical cation migration process is sequence-dependent due to its different ionization potentials. Therefore, the presence of a phosphorothioate internucleotide bond did not change the stability of ds-DNA under UVA irradiation conditions.

Publisher

Walter de Gruyter GmbH

Subject

Materials Chemistry,General Chemistry

Reference34 articles.

1. The influence of phosphorothioate on charge migration in double and single stranded DNA The theoretical approach;Karwowski;Phys Chem Chem Phys,2015

2. Lifetimes and reaction pathway of guanine radical cations and neutral guanine radicals in an oligonucleotide in aqueous solutions;Rokhlenko;Am Chem Soc,2012

3. Characterization of the dehydro - guanidinohydantoin oxidation product of guanine in a dinucleotide;Chworos;Chem Res Toxicol,2002

4. Efficient DNA interstrand cross - link formation from a nucleotide radical;Hong;Am Chem Soc,2005

5. Initiation of base excision repair : glycosylase mechanisms and structures;McCullough;Rev Biochem,1999

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3