Mercury fractionation in gypsum using temperature desorption and mass spectrometric detection

Author:

Pavlin Majda12,Popović Arkadij1,Jaćimović Radojko12,Horvat Milena12

Affiliation:

1. Department of Environmental Sciences, Jožef Stefan Institute, Jamova cesta 39, 1000Ljubljana, Slovenia

2. Jožef Stefan International Postgraduate School, Jamova cesta 39, 1000Ljubljana, Slovenia

Abstract

AbstractA quadrupole mass spectrometer was used to study the thermal release of mercury from wet flue gas desulphurization (WFGD) gypsum using temperature-programmed desorption/decomposition (TPD). The inability in direct detection of low concentrations of mercury halogenides in gypsum by mass spectrometry is discussed in detail. The hydrolysis of HgCl2 vapours under specific experimental conditions in the mass spectrometer was considered theoretically and proved experimentally. The mercury concentration in different gypsum fractions varies from 0.22 mg kg-1 (3.27-148 μm, coarse particles) to 20.6 mg kg-1 (0.41-88.0 μm, fine particles). All samples had a similar, symmetrical, single-peak (peak maximum 253–266°C) in the TPD spectra. In the present study, the use of ‘wet’ methods for preparing mercury compounds is introduced in addition to the mercury standards prepared using the ‘dry’ method, as commonly found in TPD. The study showed that selected metals, such as Fe enriched in gypsum samples, significantly influence the shape and the maximum temperature of the Hg TPD curves and that during the mercury compound preparation and the TPD process, Hg species undergo transformations that prevent the identification of their original identity.

Publisher

Walter de Gruyter GmbH

Subject

Materials Chemistry,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3