Personalised neural networks for a driver intention prediction: communication as enabler for automated driving

Author:

Reschke Johannes1,Neumann Cornelius2,Berlitz Stephan3

Affiliation:

1. Development Functions Light , AUDI AG , Ingolstadt , Germany

2. Light Technology Institute (LTI), Karlsruhe Institute of Technology (KIT) , Karlsruhe , Germany

3. Lighting Innovations, AUDI AG , Ingolstadt , Germany

Abstract

Abstract In everyday traffic, pedestrians rely on informal communication with other road users. In case of automated vehicles, this communication can be replaced by light signals, which need to be learned beforehand. Prior to an extensive introduction of automated vehicles, a learning phase for these light signals can be set up in manual driving with help of a driver intention prediction. Therefore, a three-staged algorithm consisting of a neural network, a random forest and a conditional stage, is implemented. Using this algorithm, a true-positive rate (TPR) of 94.0% for a 5.0% false-positive rate (FPR) can be achieved. To improve this process, a personalization procedure is implemented, using driver-specific behaviours, resulting in TPRs ranging from 91.5 to 96.6% for a FPR of 5.0%. Transfer learning of neural networks improves the prediction accuracy of almost all drivers. In order to introduce the implemented algorithm in today’s traffic, especially the FPR has to be improved considerably.

Publisher

Walter de Gruyter GmbH

Subject

Instrumentation,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Reference35 articles.

1. K. Merten, Informelle Zeichengebung im Straßenverkehr: Bericht zum Forschungsprojekt 7521 der Bundesanstalt für Straßenwesen Bereich Unfallforschung, Köln: Bundesanstalt für Straßenwesen Bereich Unfallforschung, 1981.

2. R. Risser, Kommunikation und Kultur des Straßenverkehrs, 1st ed. Wien, Österreich, Literas-Universitäts-Verlag, 1988.

3. A. Rasouli, I. Kotseruba, and J. K. Tsotsos, “Understanding pedestrian behavior in complex traffic scenes,” IEEE Trans. Intell. Veh., vol. 3, pp. 61–70, 2018, https://doi.org/10.1109/itsc.2018.8569324.

4. D. Rothenbücher, J. Li, D. Sirkin, B. Mok, and W. Ju, “Ghost driver: A field study investigating the interaction between pedestrians and driverless vehicles,” in 25th IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN), IEEE, ed., New York, NY, USA: IEEE, 2016, pp. 795–802.

5. V. M. Lundgren, A. Habibovic, J. Andersson, et al.., “Will there be new communication needs when introducing automated vehicles to the urban context?,” in Advances in Intelligent Systems and Computing, Advances in Human Aspects of Transportation: Proc. of the AHFE 2017 International Conf. on Human Factors in Transportation, vol. 597, Los Angeles, CA, USA, N. A. Stanton, Ed., Cham, Schweiz, Springer International Publishing, 2018, pp. 485–497.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Intelligent Performance Prediction for Powerlifting;Artificial Intelligence and Soft Computing;2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3