Nonlinear flexural analysis of sandwich beam with multi walled carbon nanotube reinforced composite sheet under thermo-mechanical loading

Author:

Lal Achchhe1,Markad Kanif2

Affiliation:

1. Mechanical Engineering Department, SVNIT, Surat, Gujarat, India. (395007); lalachchhe@yahoo.co.in; Tel.: +919824442503

2. Research Scholar, Department of Mechanical of Engineering, SVNIT, Surat 395007, India

Abstract

AbstractNonlinear flexural analysis of sandwich composite beam with multiwall carbon nanotube (MWCNT) reinforced composite face sheet and bottom sheet under the thermo-mechanically induced loading using finite element method is carried out. Solution of current bending analysis is performed using Newton’s Raphson approach by using higher order shear deformation theory (HSDT) and non-linearity with Von Kármán kinematics. The sandwich laminated composite beam is subjected to uniform, linear and nonlinear varying temperature distribution through thickness of the beam. The sandwich beam with MWCNT reinforced composite facesheet and bottom sheet is subjected to point, uniformly distributed (UDL), hydrostatic and sinusoidal loading. The two phase matrix is utilized with E-Glass fiber to form three phase composite face sheet and bottom sheet by Halpin-Tsai model. The static bending analysis is performed for evaluating the transverse central deflection of three and five layered sandwich composite beam. Transverse central deflection is measured by varying CNT volume fraction, uniformly distributed, linearly and nonlinear varying temperature distribution, thickness ratio, boundary condition, number of walls of carbon nanotube by using interactive MATLAB code.

Publisher

Walter de Gruyter GmbH

Subject

Mechanics of Materials,Safety, Risk, Reliability and Quality,Aerospace Engineering,Building and Construction,Civil and Structural Engineering,Architecture,Computational Mechanics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3