Geodesic domes for planetary exploration

Author:

Ossola Enrico1,Brusa Eugenio2,Sesana Raffaella2

Affiliation:

1. Department of Mechanical and Aerospace Engineering, Politenico di Torino, Italy. Visiting Student at Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California

2. Department of Mechanical and Aerospace Engineering, Politenico di Torino, Torino, Italy

Abstract

AbstractVenus and the Ocean Worlds are emerging areas of interest for space exploration, as they can potentially host, or have hosted, conditions compatible with life. Landers and probes for in-situ exploration, however, must deal with very high external pressure, due to the environmental conditions, often resulting in thick and heavy structures. Robust, reinforced shell structures can provide a lightweight solution for the primary structure. In this frame, the isogrid layout is already a standard in aerospace, especially for flat panels or cylindrical shells. In this paper, isogrid-stiffened hemispherical shells, or “geodesic domes”, are described, focusing on the case of a concept of a Venus lander. Early design methods for both plain and geodesic domes subjected to external pressure are presented, providing design equations. Additive Manufacturing is identified as the key technology for fabricating metallic geodesic domes, due to the complexity of the internal features. Moreover, it allows to fabricate ports and integrated thermostructural systems in the same process, potentially resulting in improved performance or cost and schedule savings.

Publisher

Walter de Gruyter GmbH

Subject

Mechanics of Materials,Safety, Risk, Reliability and Quality,Aerospace Engineering,Building and Construction,Civil and Structural Engineering,Architecture,Computational Mechanics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3