Dynamic response improvement of hybrid system by implementing ANN-GA for fast variation of photovoltaic irradiation and FLC for wind turbine

Author:

Izadbakhsh Maziar,Rezvani Alireza,Gandomkar Majid

Abstract

Abstract In this paper, dynamic response improvement of the grid connected hybrid system comprising of the wind power generation system (WPGS) and the photovoltaic (PV) are investigated under some critical circumstances. In order to maximize the output of solar arrays, a maximum power point tracking (MPPT) technique is presented. In this paper, an intelligent control technique using the artificial neural network (ANN) and the genetic algorithm (GA) are proposed to control the MPPT for a PV system under varying irradiation and temperature conditions. The ANN-GA control method is compared with the perturb and observe (P&O), the incremental conductance (IC) and the fuzzy logic methods. In other words, the data is optimized by GA and then, these optimum values are used in ANN. The results are indicated the ANN-GA is better and more reliable method in comparison with the conventional algorithms. The allocation of a pitch angle strategy based on the fuzzy logic controller (FLC) and comparison with conventional PI controller in high rated wind speed areas are carried out. Moreover, the pitch angle based on FLC with the wind speed and active power as the inputs can have faster response that lead to smoother power curves, improving the dynamic performance of the wind turbine and prevent the mechanical fatigues of the generator

Publisher

Walter de Gruyter GmbH

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3