Regulation of Lysosomal Associated Membrane Protein 3 (LAMP3) in Lung Epithelial Cells by Coronaviruses (SARS-CoV-1/2) and Type I Interferon Signaling

Author:

Ramana Chilakamarti V.1,Das Bikul1

Affiliation:

1. Thoreau Lab for Global Health , University of Massachusetts at Lowell , Lowell , MA , USA

Abstract

Abstract Severe Acute Respiratory Syndrome CoronaVirus-2 (SARS-CoV-2) infection is a major risk factor for mortality and morbidity in critical care hospitals around the world. Lung epithelial type II cells play a major role in the recognition and clearance of respiratory viruses as well as repair of lung injury in response to environmental toxicants. Gene expression profiling studies revealed that mouse lung epithelial type II cells express several cell-specific markers including surfactant proteins and Lysosomal associated membrane protein 3 (LAMP3) located in lysosomes, endosomes and lamellar bodies. These intracellular organelles are involved in vesicular transport and facilitate viral entry and release of the viral genome into the host cell cytoplasm. In this study, regulation of LAMP3 expression in human lung epithelial cells by several respiratory viruses and type I interferon signaling was investigated. Respiratory viruses including SARS-CoV-1 and SARS-CoV-2 significantly induced LAMP3 expression in lung epithelial cells within 24 hours after infection that required the presence of ACE2 viral entry receptors. Time course experiments revealed that the induced expression of LAMP3 was correlated with the induced expression of Interferon–beta (IFNB1) and STAT1 at mRNA levels. LAMP3 was also induced by direct IFN-beta treatment in multiple lung epithelial cell lines or by infection with influenza virus lacking the non-structural protein1(NS1) in NHBE bronchial epithelial cells. LAMP3 expression was also induced by several respiratory viruses in human lung epithelial cells including RSV and HPIV3. Location in lysosomes and endosomes aswell as induction by respiratory viruses and type I Interferon suggests that LAMP3 may have an important role in inter-organellar regulation of innate immunity and a potential target for therapeutic modulation in health and disease. Furthermore, bioinformatics revealed that a subset of lung type II genes were differentially regulated in the lungs of COVID-19 patients.

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,Computational Mathematics,Mathematical Physics,Molecular Biology,Biophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3