Monitoring free light chains in serum using mass spectrometry

Author:

Barnidge David R.,Dispenzieri Angela,Merlini Giampaolo,Katzmann Jerry A.,Murray David L.

Abstract

AbstractSerum immunoglobulin free light chains (FLC) are secreted into circulation by plasma cells as a by-product of immunoglobulin production. In a healthy individual the population of FLC is polyclonal as no single cell is secreting more FLC than the total immunoglobulin secreting cell population. In a person with a plasma cell dyscrasia, such as multiple myeloma (MM) or light chain amyloidosis (AL), a clonal population of plasma cells secretes a monoclonal light chain at a concentration above the normal polyclonal background.We recently showed that monoclonal immunoglobulin rapid accurate mass measurement (miRAMM) can be used to identify and quantify a monoclonal light chain (LC) in serum and urine above the polyclonal background. This was accomplished by reducing immunoglobulin disulfide bonds releasing the LC to be analyzed by microLC-ESI-Q-TOF mass spectrometry. Here we demonstrate that the methodology can also be applied to the detection and quantification of FLC by analyzing a non-reduced sample.Proof of concept experiments were performed using purified FLC spiked into normal serum to assess linearity and precision. In addition, a cohort of 27 patients with AL was analyzed and miRAMM was able to detect a monoclonal FLC in 23 of the 27 patients that had abnormal FLC values by immunonephelometry.The high resolution and high mass measurement accuracy provided by the mass spectrometry based methodology eliminates the need for κ/λ ratios as the method can quantitatively monitor the abundance of the κ and λ polyclonal background at the same time it measures the monoclonal FLC.

Publisher

Walter de Gruyter GmbH

Subject

Biochemistry (medical),Clinical Biochemistry,General Medicine

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3