The SEeMORE strategy: single-tube electrophoresis analysis-based genotyping to detect monogenic diseases rapidly and effectively from conception until birth

Author:

Cariati Federica123,Savarese Maria1,D’Argenio Valeria123,Salvatore Francesco14,Tomaiuolo Rossella123

Affiliation:

1. CEINGE-Biotecnologie Avanzate , Naples , Italy

2. Dipartimento di Medicina Molecolare e Biotecnologie Mediche , Università di Napoli Federico II , Naples , Italy

3. “Kronos DNA” s.r.l. , spin-off of Università di Napoli Federico II , Naples , Italy

4. IRCCS-Fondazione SDN , Naples , Italy , Phone: +39 0813737890, Fax +39 0813737808

Abstract

Abstract Background: The development of technologies that detect monogenic diseases in embryonic and fetal samples are opening novel diagnostic possibilities for preimplantation genetic diagnosis (PGD) and prenatal diagnosis (PND) thereby changing laboratory practice. Molecular diagnostic laboratories use different workflows for PND depending on the disease, type of biological sample, the presence of one or more known mutations, and the availability of the proband. Paternity verification and contamination analysis are also performed. The aim of this study was to test the efficacy of a single workflow designed to optimize the molecular diagnosis of monogenic disease in families at-risk of transmitting a genetic alteration. Methods: We used this strategy, which we designated “SEeMORE strategy” (Single-tube Electrophoresis analysis-based genotyping to detect MOnogenic diseases Rapidly and Effectively from conception to birth). It consists of a multiplex PCR that simultaneously carries out linkage analysis, direct analysis, maternal contamination and parenthood testing. We analyzed samples from previously diagnosed families for PND (cystic fibrosis or Duchenne muscular dystrophy) without, however, knowing the results. Results: The results obtained with the SEeMORE strategy concurred with those obtained with traditional PND. In addition, this strategy has several advantages: (i) use of one or a few cells; (ii) reduction of the procedure to 1 day; and (iii) a reduction of at least 2–3-fold of the analytic cost. Conclusions: The SEeMORE strategy is effective for the molecular diagnosis of monogenic diseases, irrespective of the amount of starting material and of the disease mutation, and can be used for PND and PGD.

Publisher

Walter de Gruyter GmbH

Subject

Biochemistry (medical),Clinical Biochemistry,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3