Preanalytical robustness of blood collection tubes with RNA stabilizers

Author:

Stellino Chiara1,Hamot Gaël1,Bellora Camille1,Trouet Johanna1,Betsou Fay1

Affiliation:

1. IBBL , Dudelange , Luxembourg

Abstract

Abstract Background Efficient blood stabilization is essential to obtaining reliable and comparable RNA analysis data in preclinical operations. PAXgene (Qiagen, Becton Dickinson) and Tempus (Applied Biosystems, Life Technologies) blood collection tubes with RNA stabilizers both avoid preanalytical degradation of mRNA by endogenous nucleases and modifications in specific mRNA concentrations by unintentional up- or down-regulation of gene expression. Methods Sixteen different preanalytical conditions were tested in PAXgene and Tempus blood samples from seven donors: different mixing after collection, different fill volumes and different 24-h transport temperature conditions after collection. RNA was extracted by column-based methods. The quality of the extracted RNA was assessed by spectrophotometric quantification, A260/A280 purity ratio, RNA Integrity Number (Agilent Bioanalyzer), miRNA quantative real time polymerase chain reaction (qRT-PCR) on two target miRNAs (RNU-24 and miR-16), mRNA quality index by qRT-PCR on the 3′ and 5′ region of the GAPDH gene, and the PBMC preanalytical score, based on the relative expression levels of the IL8 and EDEM3 coding genes. Results When PAXgene RNA and Tempus blood collection tubes were used following the manufacturers’ instructions, there was no statistically or technically significant difference in the output RNA quality attributes. However, the integrity of the RNA extracted from Tempus collection tubes was more sensitive to fill volumes and effective inversion, than to storage temperature, while the integrity of RNA extracted from PAXgene collection tubes was more sensitive to effective inversion and storage temperature than to fill volumes. Conclusions Blood collection tubes with different RNA stabilizers present different robustness to common preanalytical variations.

Publisher

Walter de Gruyter GmbH

Subject

Biochemistry, medical,Clinical Biochemistry,General Medicine

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3