Application of mathematical models of system uncertainty to evaluate the utility of assay calibration protocols

Author:

Ramamohan Varun1,Abbott Jim2,Klee George G.3,Yih Yuehwern1

Affiliation:

1. School of Industrial Engineering, Purdue University, West Lafayette, IN, USA

2. Clinical Support Group, Roche Diagnostics Corporation, Indianapolis, IN, USA

3. Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA

Abstract

Abstract Background: Laboratory protocols used to calibrate commercial clinical chemistry systems affect test result quality. Mathematical models of system uncertainty can be developed using performance parameters provided by the manufacturer for various subsystems. These models can be used to evaluate protocols for specific laboratory operations. Methods: A mathematical model was developed to estimate the uncertainty inherent in the Roche Diagnostics P-Modular system, and included uncertainties associated with the sample and reagent pipettes, spectrometer and the calibration process. The model was then used to evaluate various alternate calibration protocols: calibration based on mean of replicate measurements (n=1–6) and calibration based on conditional acceptance when the following quality control specimen was within one standard deviation of target. The effect of calibrator concentrations on assay measurement uncertainty was also studied, and calibrator concentrations that minimize uncertainty at a specific concentration were identified. Results: The simulation model produced uncertainty estimates of 3.5% for the serum cholesterol assay and identified sample pipette (40%) and spectrometer (21%) as the largest contributors to measurement uncertainty. Each additional replicate calibrator measurements result in diminishing reductions in measurement uncertainty, with maximum reductions (19%) achieved with five replicate measurements. The conditional acceptance of calibration only when the control was within 1s resulted in an 18% reduction. Conclusions: The model can be used to evaluate the utility of laboratory protocols and establish realistic assay performance targets. The model also can help instrument manufacturers and laboratorians identify major contributors to assay measurement uncertainty, which helps improve performance in future assay systems.

Publisher

Walter de Gruyter GmbH

Subject

Biochemistry, medical,Clinical Biochemistry,General Medicine

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3