The “olfactory fingerprint”: can diagnostics be improved by combining canine and digital noses?

Author:

Lippi Giuseppe1,Heaney Liam M.2ORCID

Affiliation:

1. Section of Clinical Biochemistry, Department of Neuroscience, Biomedicine and Movement , University Hospital of Verona , Piazzale L.A. Scuro, 10 , 37134 Verona , Italy

2. School of Sport, Exercise and Health Sciences , Loughborough University , Loughborough , UK

Abstract

Abstract A sniffer (detecting) dog is conventionally defined as an animal trained to use its olfactory perceptions for detecting a vast array of substances, mostly volatile organic compounds (VOCs), including those exceptionally or exclusively generated in humans bearing specific pathologies. Such an extraordinary sniffing performance translates into the capability of detecting compounds close to the femtomolar level, with performance comparable to that of current mass spectrometry-based laboratory applications. Not only can dogs accurately detect “abnormal volatilomes” reflecting something wrong happening to their owners, but they can also perceive visual, vocal and behavioral signals, which altogether would contribute to raise their alertness. Although it seems reasonable to conclude that sniffer dogs could never be considered absolutely “diagnostic” for a given disorder, several lines of evidence attest that they may serve as efficient screening aids for many pathological conditions affecting their human companions. Favorable results have been obtained in trials on cancers, diabetes, seizures, narcolepsy and migraine, whilst interesting evidence is also emerging on the capability of early and accurately identifying patients with infectious diseases. This would lead the way to proposing an “olfactory fingerprint” loop, where evidence that dogs can identify the presence of human pathologies provides implicit proof of the existence of disease-specific volatilomes, which can be studied for developing laboratory techniques. Contextually, the evidence that specific pathologies are associated with abnormal VOC generation may serve as reliable basis for training dogs to detect these compounds, even (or especially) in patients at an asymptomatic phase.

Publisher

Walter de Gruyter GmbH

Subject

Biochemistry, medical,Clinical Biochemistry,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3