Spontaneous pain as a challenge of research and management in chronic pain

Author:

Ma Longyu1ORCID,Liu Shuting1,Yi Ming12,Wan You12ORCID

Affiliation:

1. Neuroscience Research Institute and Department of Neurobiology , School of Basic Medical Sciences, Peking University , Beijing , China

2. Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University , Beijing , China

Abstract

Abstract Spontaneous pain occurring without apparent external stimuli, is a significant complaint of individuals with chronic pain whose mechanisms, somewhat surprisingly, remain poorly understood. Over the past decades, neuroimaging studies start to reveal brain activities accompanying spontaneous pain. Meanwhile, a variety of animal models and behavioral tests have been established, including non-reflexive tests and free-choice tests, which have been shown to be effective in assessing spontaneous pain. For the spontaneous pain mechanisms, multiple lines of research mainly focus on three aspects: (1) sensitization of peripheral nociceptor receptors and ion channels, (2) spontaneous neuronal firing and abnormal activity patterns at the dorsal root ganglion and spinal cord level, (3) functional and structural alterations in the brain, particularly the limbic system and the medial pain pathway. Despite accumulating evidence revealing distinct neuronal mechanisms from evoked pain, we are still far from full understanding of spontaneous pain, leaving a big gap between bench and bedside for chronic pain treatment. A better understanding of the neural processes in chronic pain, with specific linkage as to which anatomical structures and molecules related to spontaneous pain perception and comorbidities, will greatly improve our ability to develop novel therapeutics.

Funder

China Postdoctoral Science Foundation

Natural Science Foundation of Beijing Municipality

Interdisciplinary Medicine Seed Fund of Peking University

National Natural Science Foundation of China

Center for Life Sciences

Publisher

Walter de Gruyter GmbH

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3