The effect of Nb content on precipitates, microstructure and texture of grain oriented silicon steel

Author:

Wang Yong12,Zhu Chengyi12,Li Guangqiang123,Liu Yu12,Zhou Bowen4

Affiliation:

1. State Key Laboratory of Refractories and Metallurgy; Wuhan University of Science and Technology , Wuhan 430081 , China

2. Key Laboratory for Ferrous Metallurgy and Resources Utilization of Ministry of Education; Wuhan University of Science and Technology , Wuhan 430081 , China

3. Collaborative Innovation Center of Steel Technology, University of Science and Technology Beijing , Beijing , 100083 , China

4. Technical center of Liuzhou Iron and Steel Group Co., Ltd., Liuzhou , Guangxi 545000 , China

Abstract

Abstract Niobium has the potential as an inhibitor forming element in grain oriented silicon steel. The grain oriented silicon steels with different Nb contents (0.028 wt% and 0.052 wt%) were prepared, and the effect of Nb content on the evolution of precipitates, microstructure and texture were investigated by the various analysis methods and thermodynamic calculations. The results show that the smaller size and larger number density of precipitates were obtained in the sample with low Nb steel after hot rolling. In the process of normalization, Nb(C, N) are more inclined to precipitate along the dislocations caused by hot rolling, contributing to finer and more dispersed precipitates in normalized bands. The finer and more dispersed precipitates in 0.028% Nb containing silicon steel perform a stronger pinning force during whole heat treatment processes, resulting in the smaller grain size and higher intensity of Goss texture in the specimen containing 0.028%Nb. After normalization, the intensities of Goss texture in both steels decrease.

Publisher

Walter de Gruyter GmbH

Subject

Physical and Theoretical Chemistry,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3