Study on Control of Inclusion Compositions in Tire Cord Steel by Low Basicity Top Slag

Author:

Xin Cai-ping1,Yue Feng1,Jiang Chen-xu1,Wu Qi-fan2

Affiliation:

1. 1Engineering Research Institute, Beijing 100083, China

2. 2State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing 100083, China

Abstract

AbstractTop slag melting experiment was conducted in a silicon molybdenum furnace with tire cord steel billet. The influence of top slag composition on the plasticity of CaO–Al2O3–SiO2–MgO inclusion and inclusion plasticization conditions was calculated by thermodynamic software FactSage. Use the thermodynamic calculation to guide the laboratory experiments to study slag compositions influence inclusions composition. Then industrial experiments were conducted based on the theoretical calculation and results of laboratory experiments. Scanning electron microscopy (SEM) and energy-dispersive spectroscopy (EDS) were used to determine the morphology and composition of inclusions in steel. All studies show that in the CaO–Al2O3–SiO2–10% MgO diagram, when CaO = 8–48%, SiO2 = 35–75%, Al2O3 = 0–32%, inclusions are in the plastic area. When basicity of top slag is certain, Al2O3 content in inclusions increases with the increase of Al2O3 content in the slag, and the distribution of inclusions becomes scattered with the increase of Al2O3 content in slag. Inclusion plasticization can be achieved when the binary basicities of top slag are 0.6, 0.8–1.2, 1.4 and corresponding w(Al2O3)s are 2–15%, 2–10%, <2%. According to industrial experimental results, when top slag basicity decreases from 1.5 to 0.67–0.9 and Al2O3 content decreases below 10 wt%, the inclusion falls into plastic area. It is feasible in practice to control the CaO–Al2O3–SiO2–MgO inclusions plastic through adjusting Al2O3 content in slag.

Publisher

Walter de Gruyter GmbH

Subject

Physical and Theoretical Chemistry,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Reference28 articles.

1. Activities in CaO-SiO2-Al2O3 slags and deoxidation equilibria of Si and Al

2. The Thermodynamics of Liquid Dilute Iron Alloys

3. Improvement of tire cord steel process optimization and non-metallic inclusion test method;Yue-rong;World Metal Bull,2012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3