Affiliation:
1. 1School of Energy and Power Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China
2. 2Shenyang University of Chemical Technology, Shenyang 110142, China
Abstract
AbstractThe oxidation behavior of Fe-Si-Ce alloys with different Ce content at 1,173 and 1,273 K has been studied by means of optical microscope (OM), thermogravimetric analysis (TGA), X-ray diffraction (XRD) and scanning electron microscope (SEM). Results show that the Ce addition refines the grain size of Fe-Si alloys, and correspondingly the grain size of the oxides decreases, which increases the grain boundary concentration and promotes the short-path diffusion of the alloying elements and oxygen. During oxidation, the positive effect of the grain refinement on the oxidation behavior of the alloy is more obvious than negative effect, so the Ce addition improves the oxidation resistances of the Fe-3Si alloys. Compared to Fe-3Si-0.5Ce alloy, Fe-3Si-5.0Ce alloy has the larger mass gain for the preferential oxidation of the excessive content of Ce exceeding its beneficial effects. The rare earth Ce changes the oxidation mechanism of Fe-Si alloys. Oxygen penetrates the oxide scales and reacts preferentially with Ce-rich phases, which results in the pinning effect and improves the adhesion of the oxide scales.
Subject
Physical and Theoretical Chemistry,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献