Recent Development in the Investigation on Thermal Conductivity of Silicate Melts

Author:

Hasegawa Hiroki,Ohta Hiromichi1,Shibata Hiroyuki2,Waseda Yoshio2

Affiliation:

1. 1Department of Materials Engineering, Ibaraki University, Hitachi, Japan 316-8511

2. 2Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Japan 980-8577

Abstract

AbstractAccurate values of thermal conductivity of the silicate melts systematically measured as a function of chemical composition are necessary to understand a mechanism of heat transfer in the silicate melts. Hot wire method and laser flash methods have been used to measure thermal conductivity or thermal diffusivity of oxides melts at high temperatures. Laser flash method has been improved to measure thermal diffusivity of oxides melts with high accuracy. However the effects of radiative heat transfer and low electrical resistivity of samples have been made it difficult to derive precise values. To overcome these difficulties, a front-heating front-detection laser flash method with use of high time resolution detector has been proposed. The temperature response at the bottom surface of thin platinum cell containing sample irradiated by pulse laser is measured. The measurement techniques used for measurement oxide melts are compared. Then, thermal conductivity of Al2O3-Na2O-CaO-SiO2 silicate melts was measured at temperature up to 1830 K. Thermal conductivity of the molten silicate shows insignificant temperature dependence for all investigated melts. A fairly good correlation has been found between the thermal conductivity and the value of NBO/T (Non-Bridging Oxygen ions/Tetrahedrally coordinated cation) calculated from the chemical composition. The thermal conductivity increases with decrease of NBO/T for small NBO/T value and becomes constant for larger NBO/T value.

Publisher

Walter de Gruyter GmbH

Subject

Physical and Theoretical Chemistry,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3