High Temperature Corrosion of Metallic Materials in Composed Oxidizing Environments

Author:

Grzesik Z.,Mrowec S.1

Affiliation:

1. 1AGH University of Science and Technology, Faculty of Materials Science and Ceramics, Department of Solid State Chemistry, al. A. Mickiewicza 30, 30-059 Krakow, Poland

Abstract

AbstractBasing on actual theoretical approach and experimental results, the mechanism of sulphide formation beneath the oxide scale grown on metals in SO2-O2 atmospheres has been described. It has been shown that in spite of much lower sulphur partial pressure in the oxidizing atmosphere than the dissociation pressure of the sulphide to be formed, the sulphidation process takes place beneath the oxide scale. This, at the first sight, unexpected behavior results from the fact that sulphur is diffusing inwards through the primary oxide scale in the molecular form, i.e. SO2 molecules. Reaching thus metal-scale interface, where the oxygen partial pressure is very low, virtually equal to the dissociation pressure of the oxide forming the scale, SO2 ⇔ O2 + ½S2 equilibrium is shifted to the right, as a result of which the partial pressure of sulphur vapor dramatically increases, reaching the value several orders of magnitude higher than that needed for sulphide formation.Analogous situation is observed during oxidation of chromium steels in CO2-O2 atmospheres. In this case, namely, carburisation process is observed beneath the oxide scale, in spite of the fact that carbon activity in this environment is several order of magnitude lower than that required for chromium carbide formation. This again unexpected situation becomes understandable if one assumes – like in the case of metal oxidation in SO2 containing atmosphere – that carbon is transported through the oxide scale in the form of CO2 molecules.The final conclusion is, that the explanation of the mechanism of sulphide formation beneath the oxide scale on metals and of carburization beneath the oxide scales on steels constitutes the important step forward, leading to the better understanding of high temperature corrosion mechanisms of metallic materials, observed in multicomponent agresive gases.

Publisher

Walter de Gruyter GmbH

Subject

Physical and Theoretical Chemistry,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3