Effect of γ→α Phase Transformation on Refining Austenite Grains of Microalloyed Steel in Continuous Casting by Simulation

Author:

Liu Jiang1,Wen Guanghua1,Li Yunfeng1,Tang Ping1,Luo Linqing1

Affiliation:

1. 1College of Materials Science and Engineering, Chongqing University, Chongqing 400044, P.R. China

Abstract

AbstractThe formation of coarse prior austenite grain is a key factor to promote transverse crack, and the transverse crack susceptibility can be reduced by refining the austenite grain size. In the present study, the high-temperature confocal laser scanning microscope (CLSM) was used to simulate and study the effect of two γ→α phase transformation conditions on the refinement of the prior austenite grains. Under the condition of the uniform distribution of the second phase precipitation, the effect of the distribution of the proeutectoid ferrite at different cooling rates and refinement of prior austenite grain were investigated. The results indicate that, at a cooling rate of 5.0°C s–1, the austenite grain size undergoing TH1 thermal cycle was 31% smaller than the austenite grain undergoing TH0 thermal cycle. Under TH0 cooling system, the proeutectoid ferrite was uniformly distributed in the austenite matrix; under TH1 cooling, the proeutectoid ferrite precipitated and mainly concentrated along the austenite grain boundaries to form developed-film-like ferrite, which is favorable to break the prior austenite grain boundaries. After the first phase transformation, the film-like ferrite improved the nucleation conditions of new austenite grains, thus more new austenite grains splitted the prior austenite grains, ultimately refining the prior austenite grains.

Publisher

Walter de Gruyter GmbH

Subject

Physical and Theoretical Chemistry,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3