Permittivity Study of a CuCl Residue at 13–450 °C and Elucidation of the Microwave Intensification Mechanism for Its Dechlorination

Author:

Zhanyong Guo12,Fachaung Li12,Guang Su12,Demei Zhai12,Fang Cheng12,Shaohua Ju3,Jinhui Peng3

Affiliation:

1. Henan Institute of Technology , Xinxiang , Henan 453003 , China

2. Henan Engineering Research Center for Modification Technology of Metal , Xinxiang , Henan 453003 , China

3. Yunnan Provincial Key Laboratory of Intensification Metallurgy , Kunming , Yunnan 650093 , China

Abstract

Abstract Permittivity is a vitally important parameter for describing the absorbing and heating characteristics of a material under microwave irradiation, and it is also strongly dependent on temperature. However, the literature contains little information on this topic and even less particular permittivity data at elevated temperatures. In this paper, the permittivity of a CuCl residue at temperatures from 13 to 450 °C at 2.45 GHz was measured using the cavity perturbation method. The relationship of its real part (ε′) and imaginary part (ε″) with temperature (T) was deduced. In addition, the temperature-dependent tangent (tan δ) and the penetration depth (d) of microwaves into the material were calculated. The results of the permittivity study show that the dielectric constant (ε′) of the CuCl residue increased linearly with increasing temperature. In contrast, the dielectric loss factor (ε″) and loss tangent first maintained on a steady value between 13 and 300 °C and then substantially increased from 300 to 450 °C. The positive interaction of the dielectric property and temperature showed the reasonableness of our earlier metallurgy process, where the CuCl residue for dechlorination was roasted at 350–450 °C under microwave irradiation.

Publisher

Walter de Gruyter GmbH

Subject

Physical and Theoretical Chemistry,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3