Remnant Life Assessment and Microstructural Studies on Service Exposed Primary Reformer Tubes of a Catalytic Converter of an Ammonia Plant

Author:

Guguloth Krishna1,Swaminathan Jaganathan1,Bagui Sumanta1,Ray Ashok Kumar1

Affiliation:

1. 1National Metallurgical Laboratory (CSIR), Material Science and Technology Division

Abstract

Abstract13.5 year service exposed (SE) catalyst primary reformer tube material made of H39WM micro-paralloy grade used in feritilizer plant was assessed for remaining life. The investigation includes mechanical properties evaluation; microstructural analysis and accelerated stress rupture tests. Failed tube portions showed coarsening primary carbides of Chromium and Niobium along the grain boundaries. Degradation of Niobium carbide (NbC) into Ni-Nb-Si phase and partial conversion this phase back to NbC was observed. Secondary carbides within grains were almost absent. Degradation in tensile strength for a range of temperature from 1123 to 1223 K was also observed but they were within the specified limits. Premature failures within 3–5 years service exposure are more common in reformer tubes. The failure was attributed to localized overheating leading to creep damage. The cast tube material may undergo microstructural changes during service exposure which is the main cause of degradation in strength and hardness changes. Accelerated stress rupture tests were performed in the range of 1173–1248 K on samples machined from 13.5 years at 1191 K and 15.4 MPa exposed reformer steel tubing, did not reveal any degradation of rupture behavior compared to that of the virgin alloy. An additional life of at least 10.6 years is predicted at the operating stress-temperature conditions.

Publisher

Walter de Gruyter GmbH

Subject

Physical and Theoretical Chemistry,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3