Reaction Mechanism of Siderite Lump in Coal-Based Direct Reduction

Author:

Zhu Deqing1,Luo Yanhong1,Pan Jian1,Zhou Xianlin1

Affiliation:

1. 1School of Mineral Processing and Bioengineering, Central South University, Changsha, China

Abstract

AbstractSiderite is one of the significant iron ore resources in China and yet is difficult to upgrade by traditional beneficiation processes. A process of coal-based direct reduction–magnetic separation was successfully developed for the beneficiation of siderite. However, few studies have thoroughly investigated the mechanism of the direct reduction of siderite. In order to reveal the reaction mechanism of coal-based direct reduction of siderite lump, thermodynamics of direct reduction was investigated with coal as the reductant. The thermodynamics results indicate that coal-based direct reduction process of siderite lump at 1,050°C follows the steps as FeCO3→ Fe3O4→ FeO → Fe, which is verified by chemical titration analysis, X-ray diffraction and scanning electron microscope. The microstructure of siderite sample varies with different reduction stages and some 45% porosity induced by thermal decomposition of siderite is conductive to subsequent reduction. The conversion of FeO to Fe is the main reduction rate-controlling step. The reduced product with the metallic iron size over 30 μm can be effectively beneficiated by wet magnetic separation after grinding. The obvious layered structure of reduced product is due to different heat transfer resistance, CO and CO2 concentration.

Publisher

Walter de Gruyter GmbH

Subject

Physical and Theoretical Chemistry,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Reference40 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3