Affiliation:
1. 1Department of Mining and Materials Engineering, McGill University, Montreal, Quebec, Canada
Abstract
AbstractThe Na2O-MgO-CaO-FeO-Fe2O3-Al2O3-SiO2-P2O5 system is a basic oxide system for the Basic Oxygen Furnace (BOF) process as well as the hot metal dephosphorization process. Numerous experimental investigations on this oxide system are being carried out to find out an advanced process route for P removal from molten iron. In spite of their industrial importance, however, phase equilibria in oxide systems containing P2O5 have not been well investigated due to the complexity of their chemistry. No systematic thermodynamic modeling of these systems has been conducted to date, either. In order to meet the strong demands of steelmaking and other industries, new systematic thermodynamic modeling of the P2O5-containing oxide systems (Na2O-MgO-CaO-FeO-Fe2O3-Al2O3-SiO2-P2O5) and key phase diagram experiments have been carried out over the past years. In the present study, the results of the thermodynamic modeling of unary, binary and ternary P2O5-containing systems and the applications of the thermodynamic database to the dephosphorization by multi-component slag in BOF process are presented in comparison with experimental data. All thermodynamic calculations were performed using FactSage thermodynamic software.
Subject
Physical and Theoretical Chemistry,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献