Effect of Heat Treatment Technique on the Low Temperature Impact Toughness of Steel EQ70 for Offshore Structure

Author:

Tao Su-Fen12,Xia Yun-Jin1,Wang Fu-Ming23,Li Jie1,Fan Ding-Dong1

Affiliation:

1. School of Metallurgical Engineering, Anhui University of Technology, Ma’ Anshan, Anhui 243002, China

2. School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China

3. State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing 100083, China

Abstract

AbstractCircle quenching and tempering (CQ&T), intercritical quenching and tempering (IQ&T) and regular quenching and tempering (Q&T) were used to study the influence of heat treatment techniques on the low temperature impact toughness of steel EQ70 for offshore structure. The steels with 2.10 wt. % Ni (steel A) and 1.47 wt. % Ni (steel B) were chosen to analyze the effect of Ni content on the low temperature impact toughness of steel EQ70 for offshore structure. The fracture morphologies were examined by using a scanning electron microscope (SEM, JSM-6480LV), and microstructures etched by 4 vol. % nitric acid were observed on a type 9XB-PC optical microscope. The results show that the impact toughness of steel A is higher than that of steel B at the same test temperature and heat treatment technique. For steel B, the energy absorbed is, in descending order, CQ&T, Q&T and IQ&T, while for steel A, that is CQ&T, IQ&T and Q&T. The effects of heat treatment on the low temperature impact toughness are different for steels A and B, the absorbed energy changes more obviously for steel A. The results can be significant references for actual heat treatment techniques in steel plant.

Funder

National Natural Science Foundation of China

Publisher

Walter de Gruyter GmbH

Subject

Physical and Theoretical Chemistry,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3