Numerical Investigation on the Strain Evolution of Ti-6Al-4V Alloy during Multi-directional Forging at Elevated Temperatures

Author:

Yan Chenkan1,Shen Jun1,Lin Peng2

Affiliation:

1. School of Materials Science and Engineering, Tongji University, Shanghai201804, China

2. College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan030024, China

Abstract

AbstractMulti-directional forging (MDF) is one of the most promising severe plastic deformation (SPD) methods used in fabricating large-scale bulk metal materials with ultra-fine grains (UFG). A finite element model for MDF is developed to investigate the strain evolution of Ti-6Al-4V alloy subjected to MDF. Results show that the billet subjected to MDF can be divided into four individual strain zones in terms of the equivalence of effective strain evolution, and that the strain increment in each individual strain zone varies from pass to pass. The deviation between the maximum and the minimum strain increases with the increase of passes and friction coefficient. The effective strain linearly decreases from the core to the exterior of the billet in all three directions after the MDF process. With the increase of the passes and friction coefficient, the gradient of the effective strain in the billet increases in all three directions due to the difference of deformability in different individual strain zones. For the definite friction coefficient, the average and maximum effective strains are in proportion to the accumulative compression strain.

Publisher

Walter de Gruyter GmbH

Subject

Physical and Theoretical Chemistry,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3