Synthesis and Characterization of Nanocrystalline Barium–Samarium Titanate

Author:

Hessien M. M.,El-Bagoury Nader,Mahmoud M. H. H.,Hemeda Osama M.1

Affiliation:

1. 3Physics Department, Faculty of Science, Tanta University, Tanta, Egypt

Abstract

AbstractBarium–samarium titanate nanopowder (Ba0.85 Sm0.1TiO3) was synthesized through tartrate precursor route. The effect of annealing temperature on the formation, crystalline size, morphology and magnetic properties was systematically studied. The annealing temperature was varied from 600°C to 1,100°C. Thermal analysis measurement (TG-DSC, thermogravimetry-differential scanning calorimetry) was carried out on the precursor to characterize the thermal decomposition behavior. The results showed that the precursor of Ba–Sm–Ti mixture decomposed thermally in multistep weight loss up to about 480°C and perovskite Ba0.85Sm0.1TiO3 started to form at ~520°C. X-ray diffraction and Fourier transform infrared (FTIR) spectroscopic measurements showed that the synthesized Ba0.85Sm0.1TiO3 has a tetragonal dominant structure with the presence of intermediate SmTi2O3 at lower annealing temperature. The ratio of SmTi2O3 was decreased and completely disappeared at higher annealing temperatures. The tetragonality, the theoretical density and the crystalline size were increased by increasing annealing temperature. The crystalline size is still in nano-range of 12.4–19.9 nm even after annealing at 1,100°C. The morphology of the produced sample transferred from nano-cubes to nano-whisker to nano-mace (nano-aggregates) with the increase of annealing temperature.

Publisher

Walter de Gruyter GmbH

Subject

Physical and Theoretical Chemistry,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3