Evaluation of Different Thin-Client Based Virtual Classroom Architectures
Author:
Darabont Örs1, Kiss Konrád József1, Domokos József1
Affiliation:
1. Department of Electrical Engineering, Faculty of Technical and Human Sciences , Sapientia Hungarian University of Transylvania , Tg. Mureş
Abstract
Abstract
This paper presents an evaluation of different methods used to deliver virtual machines capable of being accessed remotely by thin-clients. The objective of the research was to provide a recommendation for building a cost-effective computer infrastructure for use in two scenarios: as a programming lab, and as an office infrastructure.
We have found that different thin-client solutions based on single board computers are reliable solutions for commercially available thin client replacement, because they can run free Linux-based operating systems, can handle Remote Desktop Protocol, have lower acquisition costs, lower power consumption and offer almost the same computing performance.
For providing remote desktops, there are several methods and virtualization platforms available. We benchmarked some of these platforms in order to choose the one best-suited for implementation. Our conclusion is that Microsoft Remote Desktop Services outperforms the virtualization based solutions, but it entails high license fees. Of the virtualization solutions tested, the VMW are ESXi based one is the most reliable choice.
Publisher
Walter de Gruyter GmbH
Reference18 articles.
1. [1] Darabont Ö., Kiss K. J., Domokos J., “Performance Analysis of Remote Desktop Virtualization based on Hyper-V versus Remote Desktop Services”, in Proceedings of the 5th International Conference on Recent Acievements in Mechatronics, Automation, Computer Science and Robotics (MACRo 2015), Tîrgu Mureș, Romania, 2015, pp. 125-135. 2. [2] Bari F., Boutaba R., Esteves R., Granville L. Z., Podlesny M., Rabbani G., Zhang Q., Zhani M. F., “Data Center Network Virtualization: A Survey”, in IEEE Communications Surveys & Tutorials, Vol. 15, No. 2, pp. 909-918, 2013. 3. [3] Rodríguez-Haro F., Freitag F., Navarro L., Hernández-Sánchez E., Farías-Mendoza N., Guerrero-Ibanez J. A., González-Potes A., “A summary of virtualization techniques”, in Proceedings of the 2012 Iberoamerican Conference on Electronics Engineering and Computer Science, Procedia Technology 3, 2012, pp. 267 – 272. 4. [4] Miseviciene R., Ambraziene D., Tuminauskas R., Pažereckas N., “Educational Infrastructure Using Virtualization Technologies: Experience at Kaunas University of Technology”, in Informatics in Education, Vol. 11, No. 2, pp. 227-237, 2012. 5. [5] Cimen C., Kavurucu Y., Aydin H., “Usage Of Thin-client / Server Architecture In Computer Aided Education”, TOJET: The Turkish Online Journal of Educational Technology, volume 13, issue 2, pp. 181-185, 2014.
|
|