Robust Active Contour Model Guided by Local Binary Pattern Stopping Function

Author:

Azizi Abdallah12,Elkourd Kaouther32,Azizi Zineb1

Affiliation:

1. Department of Electrical Engineering, University of Mohamed Khider, B.P 145 RP, Biskra , Algeria

2. Laboratory of Identification, Command, Control and Communication “LI3CUB”, University of Mohamed Khider, B.P 145 RP, Biskra , Algeria

3. Department of Physics, University of Ben Youcef Ben Khedda , Algiers, Algeria

Abstract

Abstract Edge based active contour models are adequate to some extent in segmenting images with intensity inhomogeneity but often fail when applied to images with poorly defined or noisy boundaries. Instead of the classical and widely used gradient or edge stopping function which fails to stop contour evolution at such boundaries, we use local binary pattern stopping function to construct a robust and effective active contour model for image segmentation. In fact, comparing to edge stopping function, local binary pattern stopping function accurately distinguishes object’s boundaries and determines the local intensity variation dint to the local binary pattern textons used to classify the image regions. Moreover, the local binary pattern stopping function is applied using a variational level set formulation that forces the level set function to be close to a signed distance function to eliminate costly re-initialization and speed up the motion of the curve. Experiments on several gray level images confirm the advantages and the effectiveness the proposed model.

Publisher

Walter de Gruyter GmbH

Subject

General Computer Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3